University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Identification and Classification of New Psychoactive Substances Using Raman Spectroscopy and Chemometrics

        View/Open
        Download fulltext (PDF, 16Mb)
        Author
        Guirguis, Amira
        Attention
        2299/18331
        Abstract
        The sheer number, continuous emergence, heterogeneity and wide chemical and structural diversity of New Psychoactive Substance (NPS) products are factors being exploited by illicit drug designers to obscure detection of these compounds. Despite the advances in analytical techniques currently used by forensic and toxicological scientists in order to enable the identification of NPS, the lack of a priori knowledge of sample content makes it very challenging to detect an ‘unknown’ substance. The work presented in this thesis serves as a proof-of-concept by combining similarity studies, Raman spectroscopy and chemometrics, underpinned by robust pre-processing methods for the identification of existing or newly emerging NPS. It demonstrates that the use of Raman spectroscopy, in conjunction with a ‘representative’ NPS Raman database and chemometric techniques, has the potential for rapidly and non-destructively classifying NPS according to their chemical scaffolds. The work also demonstrates the potential of indicating the purity in formulations typical of those purchased by end users of the product i.e. ‘street-like’ mixtures. Five models were developed, and three of these provided an insight into the identification and classification of NPS depending on their purity. These are: the ‘NPS and non-NPS/benchtop’ model, the ‘NPS reference standards/handheld’ model and the ‘NPS and non-NPS/handheld’ model. In the ‘NPS and non-NPS/benchtop’ model (laser λex = 785 nm), NPS internet samples were projected onto a PCA model derived from a Raman database comprising ‘representative’ NPSs and cutting agent/ adulterant reference standards. This proved the most successful in suggesting the likely chemical scaffolds for NPS present in samples bought from the internet. In the ‘NPS reference standards/handheld’ model (laser λex = 1064 nm), NPS reference standards were projected onto a PCA model derived from a Raman database comprising ‘representative’ NPSs. This was the most successful of the three models with respect to the accurate identification of pure NPS. This model suggested chemical scaffolds in 89% of samples compared to 76% obtained with the benchtop instrument, which generally had higher fluorescent backgrounds. In the ‘NPS and non-NPS/handheld’ model (laser λex = 1064 nm), NPS internet samples were projected onto a PCA model derived from a Raman database comprising ‘representative’ NPSs and cutting agent/ adulterant reference standards. This was the most successful in differentiating between NPS internet samples dependent on their purity. In all models, the main challenges for identification of NPS were spectra displaying high fluorescent backgrounds and low purity profiles. The ‘first pass’ matching identification of NPS internet samples on a handheld platform was improved to ~50% using a laser source of 1064 nm because of a reduction in fluorescence at this wavelength. We outline limitations in using a handheld platform that may have added to problems with appropriate identification of NPS in complex mixtures. However, the developed models enabled the appropriate selection of Raman signals crucial for identification of NPS via data reduction, and the extraction of important patterns from noisy and/or corrupt data. The models constitute a significant contribution in this field with respect to suggesting the likely chemical scaffold of an ‘unknown’ molecule. This insight may accelerate the screening of newly emerging NPS in complex matrices by assigning them to: a structurally similar known molecule (supercluster/ cluster); or a substance from the same EMCDDA/EDND class of known compounds. Critical challenges in instrumentation, chemometrics, and the complexity of samples have been identified and described. As a result, future work should focus on: optimising the pre-processing of Raman data collected with a handheld platform and a 1064 nm laser λex; and optimising the ‘representative’ database by including other properties and descriptors of existing NPS.
        Publication date
        2017-06-14
        Published version
        https://doi.org/10.18745/th.18331
        https://doi.org/10.18745/th.18331
        Other links
        http://hdl.handle.net/2299/18331
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan