Show simple item record

dc.contributor.authorChang, S
dc.contributor.authorLeng, M
dc.contributor.authorWu, Hongwei
dc.contributor.authorThompson, J.M.
dc.date.accessioned2017-07-04T16:26:01Z
dc.date.available2017-07-04T16:26:01Z
dc.date.issued2016-01-04
dc.identifier.citationChang , S , Leng , M , Wu , H & Thompson , J M 2016 , ' Aircraft Ice Accretion Prediction Using Neural Network and Wavelet Packet Transform ' , Aircraft Engineering and Aerospace Technology , vol. 88 , no. 1 , pp. 128-136 . https://doi.org/10.1108/AEAT-05-2014-0057
dc.identifier.urihttp://hdl.handle.net/2299/18761
dc.descriptionThis document is the accepted manuscript version of the following article "S. Chang, et al., “Aircraft Ice Accretion Prediction Using Neural Network and Wavelet Packet Decomposition”, Aircraft Engineering and Aerospace Technology, Vol. 88(1): 128-136, January 2016." This version of record is available online at: https://doi.org/10.1108/AEAT-05-2014-0057 © Emerald Group Publishing Limited 2016Published byEmerald Group Publishing Limited.
dc.description.abstractPurpose – The purpose of this paper is to present a new technique based on the combination of wavelet packet transform (WPT) and artificial neural networks (ANNs) for predicting the ice accretion on the surface of an airfoil. Design/methodology/approach – Wavelet packet decomposition is used to reduce the number of input vectors to ANN and to improve the training convergence. An ANN is developed with five variables (velocity, temperature, liquid water content, median volumetric diameter and exposure time) taken as input data and one dependent variable (the decomposed ice shape) given as the output. For the purpose of comparison, three different ANNs, back-propagation network (BP), radial basis function network (RBF) and generalized regression neural network (GRNN), are trained to simulate the wavelet packet coefficients as a function of the in-flight icing conditions. Findings – The predicted ice accretion shapes are compared with the corresponding results from previously published NASA experimentation, LEWICE and the Fourier-expansion-based method. It is found that the BP network has an advantage on predicting the rime ice, and the RBF network is relatively suitable for the glaze ice, while the GRNN can be applied for both without classifying the specimens. Results also show an advantage of WPT in performing the analysis of ice accretion information and the prediction accuracy is improved as well. Practical implications – The proposed method is open to further improvement and investment due to its small computational resource requirement and efficient performance. Originality/value – The simulation method combining ANN and WPT outlined here can lay the foundation for further research relating to ice accretion prediction under different ice cloud conditions.en
dc.format.extent9
dc.format.extent2064687
dc.language.isoeng
dc.relation.ispartofAircraft Engineering and Aerospace Technology
dc.titleAircraft Ice Accretion Prediction Using Neural Network and Wavelet Packet Transformen
dc.contributor.institutionCentre for Climate Change Research (C3R)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionEnergy and Sustainable Design Research Group
dc.description.statusPeer reviewed
dc.date.embargoedUntil2017-01-04
rioxxterms.versionofrecord10.1108/AEAT-05-2014-0057
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record