University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Influence of Muscle Fatigue on Electromyogram-Kinematic Correlation During Robot-Assisted Upper Limb Training

        View/Open
        Final Published version (PDF, 1Mb)
        Author
        Thacham-Poyil, Azeemsha
        Steuber, Volker
        Amirabdollahian, Farshid
        Attention
        2299/22500
        Abstract
        Introduction: Studies on adaptive robot-assisted upper limb training interactions do not often consider the implications of muscle fatigue sufficiently. Methods: In order to explore this, we initially assessed muscle fatigue in 10 healthy subjects using electromyogram features (average power and median power frequency) during an assist-as-needed interaction with HapticMASTER robot. Spearman’s correlation study was conducted between EMG average power and kinematic force components. Since the robotic assistance resulted in a variable fatigue profile across participants, a completely tiring experiment, without a robot in the loop, was also designed to confirm the results. Results: A significant increase in average power and a decrease in median frequency were observed in the most active muscles. Average power in the frequency band of 0.8-2.5Hz and median frequency in the band of 20-450Hz are potential fatigue indicators. Also, comparing the correlation coefficients across trials indicated that correlation was reduced as the muscles were fatigued. Conclusions: Robotic assistance based on user’s performance has resulted in lesser muscle fatigue, which caused an increase in the EMG-force correlation. We now intend to utilize the electromyogram and kinematic features for the auto-adaptation of therapeutic human-robot interactions.
        Publication date
        2020-03-16
        Published in
        Journal of Rehabilitation and Assistive Technologies Engineering
        Published version
        https://doi.org/10.1177%2F2055668320903014
        License
        http://creativecommons.org/licenses/by-nc/4.0/
        Other links
        http://hdl.handle.net/2299/22500
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan