dc.contributor.author | Perez Diaz, Noelia | |
dc.date.accessioned | 2020-04-22T10:57:52Z | |
dc.date.available | 2020-04-22T10:57:52Z | |
dc.date.issued | 2020-01-13 | |
dc.identifier.uri | http://hdl.handle.net/2299/22627 | |
dc.description.abstract | The peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a transcription factor ubiquitously expressed in cells, although more highly active in skeletal muscle, arteries and endothelium. Signalling via PPARβ/δ is involved in lipid metabolism, glucose metabolism, insulin sensitivity, inflammation, and cell proliferation and therefore it is emerging as a therapeutic target for the treatment of disorders associated with metabolic syndrome or diabetes. However, there are great discrepancies in the literature about the role of PPARβ/δ and scientists describe both anti- and pro-effects on inflammation, cell migration and cell proliferation after ligand-activation of PPARβ/δ. Understanding the PPARβ/δ mode of action is of great interest and may provide new molecular mechanisms for treating a variety of inflammation-related diseases. This thesis aims to expand the knowledge on PPARβ/δ to better understand its mechanism of action at genomic and non-genomic level, which might give some clues for new therapeutic drug developments targeting PPARβ/δ.
Methods: Pharmacological techniques including organ bath and myography were used for the study of the non-genomic effects of PPARβ/δ on vascular tone, comparing aorta and mesenteric arteries as a model of systemic and resistance vasculature respectively from healthy and streptozotocin (STZ)-induced diabetic rats. Molecular biology techniques including Griess assay, ELISA and qRT-PCR were used for the study of the regulation of lung inflammation by PPARβ/δ, focusing on the PPARβ/δ molecular switch between induction and trans-repression, two different pathways of gene regulation. Computational methods such as docking were used for the study of the PPARβ/δ binding pocket and how PPARβ/δ is activated/repressed after ligand binding as well as the possibility of accommodating more than one ligand simultaneously into the binding pocket.
Results: In large STZ-diabetic systemic aorta arteries, PPARβ/δ inhibits the contraction through the PI3K/Akt/eNOS pathway. GW0742, a PPARβ/δ agonist, improves vasodilation through the RhoA/ROCK pathway in Naïve aorta and through potassium channels in STZ-diabetic aorta. In resistance arteries such as mesenteric arteries, PPARβ/δ inhibits the contraction through the PI3K/Akt/eNOS pathway in Naïve and possibly STZ-diabetic tissues. In contrast, GW0742 inhibits the RhoA/ROCK pathway on STZ-diabetic mesentery arteries and regulates the potassium channels in Naïve mesenteric arteries in a PPARβ/δ independent manner. In the model of lung inflammation used, the presence of agonist (GW0742 or L-165041) and antagonist (GSK3787 or GSK0660) at same time has anti-inflammatory effects and switches the PPARβ/δ mode of action from induction to trans-repression, therefore it was concluded that, at least in this model, the PPARβ/δ induction mode of action is pro-inflammatory and the trans-repression anti-inflammatory. PPARβ/δ agonists and antagonists bind differently to the PPARβ/δ receptor pocket. PPARβ/δ agonists form polar interactions with the residues His287, His413 and Tyr437 whilst PPARβ/δ antagonists form polar interactions with the residues Thr252 and Asn307. Further, our modelling indicates favourable binding energies and the feasibility of two ligands binding at same time into the PPARβ/δ binding pocket.
Conclusion: A multidisciplinary approach was designed for the study of PPARβ/δ and provided novel information about its functioning both at genomic and non-genomic level. The findings of this thesis can help the drug discovery industry for a better prediction of the modelling behaviour of new PPARβ/δ drugs and can support the rationale for developing new treatments targeting PPARβ/δ for hypertension and/or cardiovascular complications. | en_US |
dc.language.iso | en | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | PPARβ/δ | en_US |
dc.subject | molecular switch | en_US |
dc.subject | inflammation | en_US |
dc.subject | diabetes | en_US |
dc.subject | RXR | en_US |
dc.subject | NF-κB | en_US |
dc.subject | lung | en_US |
dc.subject | pulmonary artery | en_US |
dc.subject | mesenteric artery | en_US |
dc.subject | aorta | en_US |
dc.subject | bronchi | en_US |
dc.subject | GW0742 | en_US |
dc.subject | GSK3787 | en_US |
dc.subject | vascular reactivity | en_US |
dc.subject | myography | en_US |
dc.subject | docking | en_US |
dc.subject | RhoA/ROCK | en_US |
dc.subject | PI3K/Akt/eNOS | en_US |
dc.title | The Effects of PPARβ/δ Ligands on Lung Inflammation and Vascular Reactivity | en_US |
dc.type | info:eu-repo/semantics/doctoralThesis | en_US |
dc.identifier.doi | doi:10.18745/th.22627 | * |
dc.identifier.doi | 10.18745/th.22627 | |
dc.type.qualificationlevel | Doctoral | en_US |
dc.type.qualificationname | PhD | en_US |
dcterms.dateAccepted | 2020-01-13 | |
rioxxterms.funder | Default funder | en_US |
rioxxterms.identifier.project | Default project | en_US |
rioxxterms.version | NA | en_US |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
rioxxterms.licenseref.startdate | 2020-04-22 | |
herts.preservation.rarelyaccessed | true | |
rioxxterms.funder.project | ba3b3abd-b137-4d1d-949a-23012ce7d7b9 | en_US |