University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Reducing Grid Distortions Utilizing Energy Demand Prediction and Local Storages

        View/Open
        09328834.pdf (PDF, 4Mb)
        Author
        Schirmer, Pascal
        Geiger, Christian
        Mporas, Iosif
        Attention
        2299/23811
        Abstract
        Energy storage systems will play a key role in the establishment of future smart grids. Specifically, the integration of storages into the grid architecture serves several purposes, including the handling of the statistical variation of energy supply through increasing usage of renewable energy sources as well as the optimization of the daily energy usage through load scheduling. This article is focusing on the reduction of the grid distortions using non-linear convex optimization. In detail an analytic storage model is used in combination with a load forecasting technique based on socio-economic information of a community of households. It is shown that the proposed load forecasting technique leads to significantly reduced forecasting errors (relative reductions up-to 14.2%), while the proposed storage optimization based on non-linear convex optimizations leads to 12.9% reductions in terms of peak to average values for ideal storages and 9.9% for storages with consideration of losses respectively. Furthermore, it was shown that the largest improvements can be made when storages are utilized for a community of households with a storage size of 4.6-8.2 kWh per household showing the effectiveness of shared storages as well as load forecasting for a community of households.
        Publication date
        2021-01-27
        Published in
        IEEE Access
        Published version
        https://doi.org/10.1109/ACCESS.2021.3053200
        Other links
        http://hdl.handle.net/2299/23811
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan