Show simple item record

dc.contributor.authorOei, Martijn S. S. L.
dc.contributor.authorWeeren, Reinout J. van
dc.contributor.authorHardcastle, Martin J.
dc.contributor.authorVazza, Franco
dc.contributor.authorShimwell, Tim W.
dc.contributor.authorLeclercq, Florent
dc.contributor.authorBrüggen, Marcus
dc.contributor.authorRöttgering, Huub J. A.
dc.date.accessioned2022-11-22T17:15:02Z
dc.date.available2022-11-22T17:15:02Z
dc.date.issued2022-10-16
dc.identifier.citationOei , M S S L , Weeren , R J V , Hardcastle , M J , Vazza , F , Shimwell , T W , Leclercq , F , Brüggen , M & Röttgering , H J A 2022 , ' An intergalactic medium temperature from a giant radio galaxy ' , Monthly Notices of the Royal Astronomical Society . https://doi.org/10.1093/mnras/stac2948
dc.identifier.issn0035-8711
dc.identifier.otherArXiv: http://arxiv.org/abs/2210.10156v1
dc.identifier.urihttp://hdl.handle.net/2299/25914
dc.description© 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
dc.description.abstractThe warm-hot intergalactic medium (warm-hot IGM, or WHIM) pervades the filaments of the Cosmic Web and harbours half of the Universe's baryons. The WHIM's thermodynamic properties are notoriously hard to measure. Here we estimate a galaxy group - WHIM boundary temperature using a new method. In particular, we use a radio image of the giant radio galaxy (giant RG, or GRG) created by NGC 6185, a massive nearby spiral. We analyse this extraordinary object with a Bayesian 3D lobe model and deduce an equipartition pressure $P_\mathrm{eq} = 6 \cdot 10^{-16}\ \mathrm{Pa}$ -- among the lowest found in RGs yet. Using an X-ray-based statistical conversion for Fanaroff-Riley II RGs, we find a true lobe pressure $P = 1.5\substack{+1.7\\-0.4}\cdot 10^{-15}\ \mathrm{Pa}$. Cosmic Web reconstructions, group catalogues, and MHD simulations furthermore imply an $\mathrm{Mpc}$-scale IGM density $1 + \delta_\mathrm{IGM} = 40\substack{+30\\-10}$. The buoyantly rising lobes are crushed by the IGM at their inner side, where an approximate balance between IGM and lobe pressure occurs: $P_\mathrm{IGM} \approx P$. The ideal gas law then suggests an IGM temperature $T_\mathrm{IGM} = 11\substack{+12\\-5} \cdot 10^6\ \mathrm{K}$, or $k_\mathrm{B}T_\mathrm{IGM} = 0.9\substack{+1.0\\-0.4}\ \mathrm{keV}$, at the virial radius -- consistent with X-ray-derived temperatures of similarly massive groups. Interestingly, the method is not performing at its limit: in principle, estimates $T_\mathrm{IGM} \sim 4 \cdot 10^6\ \mathrm{K}$ are already possible -- rivalling the lowest X-ray measurements available. The technique's future scope extends from galaxy group outskirts to the WHIM. In conclusion, we demonstrate that observations of GRGs in Cosmic Web filaments are finally sensitive enough to probe the thermodynamics of galaxy groups and beyond.en
dc.format.extent3658440
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjectastro-ph.GA
dc.subjectastro-ph.CO
dc.titleAn intergalactic medium temperature from a giant radio galaxyen
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionSPECS Deans Group
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1093/mnras/stac2948
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record