University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Using single layer networks for discrete, sequential data: an example from natural language processing

        View/Open
        900542.pdf (PDF, 367Kb)
        Author
        Lyon, C.
        Frank, R.
        Attention
        2299/278
        Abstract
        Natural Language Processing (NLP) is concerned with processing ordinary, unrestricted text. This work takes a new approach to a traditional NLP task, using neural computing methods. A parser which has been successfully implemented is described. It is a hybrid system, in which neural processors operate within a rule based framework. The neural processing components belong to the class of Generalized Single Layer Networks (GSLN). In general, supervised, feed-forward networks need more than one layer to process data. However, in some cases data can be pre-processed with a non-linear transformation, and then presented in a linearly separable form for subsequent processing by a single layer net. Such networks offer advantages of functional transparency and operational speed. For our parser, the initial stage of processing maps linguistic data onto a higher order representation, which can then be analysed by a single layer network. This transformation is supported by information theoretic analysis. Three different algorithms for the neural component were investigated. Single layer nets can be trained by finding weight adjustments based on (a) factors proportional to the input, as in the Perceptron, (b) factors proportional to the existing weights, and (c) an error minimization method. In our experiments generalization ability varies little; method (b) is used for a prototype parser. This is available via telnet.
        Publication date
        1997
        Published in
        Neural Computing and Applications
        Published version
        https://doi.org/10.1007/BF01424225
        Other links
        http://hdl.handle.net/2299/278
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan