An Instrumental High-Frequency Smart Meter with Embedded Energy Disaggregation
Most available smart meters sample at low rates and transmit the acquired measurements to a cloud server for further processing. This article presents a prototype smart meter operating at a high sampling frequency (15 kHz) and performing energy disaggregation locally, thus negating the need to transmit the acquired high-frequency measurements. The prototype’s architecture comprises a custom signal conditioning circuit and an embedded board that performs energy disaggregation using a deep learning model. The influence of the sampling frequency on the model’s accuracy and the edge device power consumption, throughput, and latency across different hardware platforms is evaluated. The architecture embeds NILM inference into the meter hardware while maintaining a compact and energy-efficient design. The presented smart meter is benchmarked across six embedded platforms, evaluating model accuracy, latency, power usage, and throughput. Furthermore, three novel hardware-aware performance metrics are introduced to quantify NILM efficiency per unit cost, throughput, and energy, offering a reproducible framework for future NILM-enabled edge meter designs.
Item Type | Article |
---|---|
Additional information | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Date Deposited | 28 Aug 2025 17:05 |
Last Modified | 28 Aug 2025 17:05 |