Context-Aware Beam Selection for IRS-Assisted mmWave V2I Communications
Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency, holds significant promise for vehicle-to-everything (V2X) communications. However, it faces challenges such as high propagation losses and limited coverage in dense urban vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues by enhancing mmWave signal paths around obstacles, thereby maintaining reliable communication. This paper introduces a novel Contextual Multi-Armed Bandit (C-MAB) algorithm designed to dynamically adapt beam and IRS selections based on real-time environmental context. Simulation results demonstrate that the proposed C-MAB approach significantly improves link stability, doubling average beam sojourn times compared to traditional SNR-based strategies and standard MAB methods, and achieving gains of up to four times the performance in scenarios with IRS assistance. This approach enables optimized resource allocation and significantly improves coverage, data rate, and resource utilization compared to conventional methods.
| Item Type | Article |
|---|---|
| Identification Number | 10.3390/s25133924 |
| Additional information | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| Keywords | mmwave, v2x, ris, machine learning, multi-armed bandit, engineering(all) |
| Date Deposited | 06 Feb 2026 10:07 |
| Last Modified | 07 Feb 2026 02:09 |
