A Self-Contained Startup Charging Circuit for Energy Harvesting Batteryless IoT Devices
This paper presents a self-contained startup charging circuit designed for energy-harvesting batteryless IoT devices. The proposed circuit consists of a current-biasing block, a current mirror, a reference voltage generator, and a comparator circuit. The current-biasing circuit drives the current mirror, which supplies the charging current to the energy storage element. Simultaneously, the reference voltage generator—also biased by the current source—produces a stable DC reference voltage. When the energy storage device (e.g., a supercapacitor) lacks sufficient charge, the comparator enables the charging path by activating the current-biasing and mirror circuits. Once adequate energy is stored, the comparator disables these circuits to prevent overcharging. This self-contained solution is intended to autonomously initialize and manage the cold-start charging process in energy-harvesting systems without relying on external controllers. This paper highlights the circuit architecture and validated performance, demonstrating a charging current of up to 27 mA, a reference voltage of 700 mV, and an operating range from 0.9 V to 1.8 V across a temperature range of −40 °C to 85 °C.
| Item Type | Article |
|---|---|
| Identification Number | 10.3390/jlpea15040071 |
| Additional information | © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) |
| Date Deposited | 06 Feb 2026 10:19 |
| Last Modified | 06 Feb 2026 10:19 |
