Robot house human activity recognition dataset
View/ Open
Author
Bamorovat Abadi, Mohammad
Shahabian Alashti, Mohamad Reza
Holthaus, Patrick
Menon, Catherine
Amirabdollahian, Farshid
Attention
2299/27119
Abstract
Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.