Robot house human activity recognition dataset
Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.Human activity recognition is one of the most challenging tasks in computer vision. State-of-the art approaches such as deep learning techniques thereby often rely on large labelled datasets of human activities. However, currently available datasets are suboptimal for learning human activities in companion robotics scenarios at home, for example, missing crucial perspectives. With this as a consideration, we present the University of Hertfordshire Robot House Human Activity Recognition Dataset (RH-HAR-1). It contains RGB videos of a human engaging in daily activities, taken from four different cameras. Importantly, this dataset contains two non-standard perspectives: a ceiling-mounted fisheye camera and a mobile robot's view. In the first instance, RH-HAR-1 covers five daily activities with a total of more than 10,000 videos.
Item Type | Book Section |
---|---|
Additional information | © 2021 EPSRC UK-Robotics and Autonomous Systems (UK-RAS) Network. This is an open access conference paper distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ |
Date Deposited | 15 May 2025 16:46 |
Last Modified | 30 May 2025 23:18 |