University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Coarse WDM Wavelength-Routed Passive Optical Networks

        View/Open
        Download fulltext (PDF, 44Kb)
        Download fulltext (PDF, 172Kb)
        Download fulltext (PDF, 42Kb)
        Download fulltext (PDF, 202Kb)
        Download fulltext (PDF, 567Kb)
        Download fulltext (PDF, 662Kb)
        Download fulltext (PDF, 1Mb)
        Download fulltext (PDF, 833Kb)
        Download fulltext (PDF, 522Kb)
        Download fulltext (PDF, 719Kb)
        Download fulltext (PDF, 77Kb)
        Download fulltext (PDF, 103Kb)
        Download fulltext (PDF, 223Kb)
        Download fulltext (PDF, 185Kb)
        Author
        Shachaf, Y.
        Attention
        2299/2628
        Abstract
        The emergence of new bandwidth-intensive applications articulated by distance learning, online gaming, Web 2.0 and movie delivery by means of high-definition video, has ultimately justified the necessity of upgrading the access network infrastructure to provide fat-bandwidth pipelines at subscriber close proximity. Passive optical networks (PONs) are an emerging technology to deliver these services. This thesis presents innovative work performed towards the application of coarse wavelength division multiplexing (CWDM) to route communications to and from reflective optical network units (ONUs) incorporated in time and wavelength division multiplexed PONs. The concept of coarse and dense WDM grid integration and its adaptation in access networks to map, for the first time, selective closely-spaced wavelengths into coarse passband windows of Gaussian and flat-top arrayed waveguide gratings (AWGs), exhibiting coarse-fine grooming, is initially developed. This is followed by the identification of a new network architecture combining multiple PONs, using a coarse AWG to form a next-generation access network. A significant feature of this approach allows for time division multiplexing (TDM) and WDM PON technologies to be integrated through the 7 nm coarse passband windows of a single AWG, providing for interoperability and high scalability. The network performance through simulation, in the presence of polarisation-dependent wavelength shift and associated polarisation-dependent loss, shows the capability of a single optical line terminal (OLT) to access various physical PONs in 25 km proximity with multiple wavelengths through a single AWG router. This approach enables centralised bandwidth allocation and a smooth migration path between time-shared and densely-penetrated access networks. Furthermore, to demonstrate full-duplex operation, allowing for increased bandwidth utilisation of the reflective access network architecture, full-duplex functionality is achieved by using polarisation division multiplexing. This is implemented in the OLT by assigning each ONU downstream data and continues waves on orthogonal states of polarisation. Hence, by assuming the use of symmetrical broadband services, the novel multi-PON access network verifies its potential to double the bandwidth utilisation for each subscriber, allowing for increased bidirectional network throughput. In addition, an experimental test-bed is performed which demonstrates the core operation of the network being, by means of a readily-available 2.7 nm-wide AWG router. Hence, the practical feasibility of the new access network concept is demonstrated.
        Publication date
        2008-11-25
        Other links
        http://hdl.handle.net/2299/2628
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan